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A CONTROLLER FOR HVAC SYSTEMS WITH FAULT DETECTION
CAPABILITIES BASED ON SIMULATION MODELS

T. I. Salsbury
Lawrence Berkeley National Laboratory

Berkeley, California 94709, USA

ABSTRACT
This paper describes a control scheme with fault
detection capabilities suitable for application to
HVAC systems.  The scheme uses static simulation
models of the system under control to generate feed-
forward control action, which acts to supplement a
conventional PI(D) feedback loop.  The feedforward
action reduces the effect of plant non-linearity on
control performance and provides more consistent
disturbance rejection as operating conditions change.
In addition to generating feedforward control action,
the models act as a reference of correct operation.
Faults that occur in the HVAC system under control
cause the PI(D) controller to provide a greater than
normal control action to compensate for fault-
induced inaccuracies in the feedforward models. The
controller monitors the level of feedback
compensation and generates alarms when thresholds
are exceeded.  The paper presents results from testing
the controller with a dual-duct air-handling unit.

INTRODUCTION
Heating, ventilating, and air-conditioning (HVAC)
systems are typically controlled using proportional
plus integral (and sometimes plus derivative) PI(D)
control law.  In practice, HVAC systems exhibit non-
linear operating characteristics, which causes control
performance to vary when operating conditions
change.  Poor control performance can lead to
occupant discomfort in a building, greater energy
consumption, and increased wear on controlled
elements, such as actuators, valves, and dampers.

In a conventional PI(D) feedback loop, the controller
does not contain much information about the process
it is controlling. Faults that lead to performance
deterioration or a change in system behavior are
often masked within a feedback loop. The control
scheme described in this paper uses a model of the
correctly operating system to supplement a
conventional PI(D) feedback loop.  The model is
used as part of a feedforward control regime in order
to reduce the effects of plant non-linearity on control
performance.  In addition, the model acts as a
reference of correct behavior, which facilitates the
detection of faults that develop in the controlled
system.

Several researchers (e.g. Gertler, 1998; Glass et al.,
1994; Isermann, 1995; Patton et al., 1995) have

proposed fault detection and diagnosis schemes
based on the use of models.  The main trade-off with
model-based schemes is configuration effort versus
model accuracy.  Generally, the greater the potential
accuracy of the models, the greater the effort required
to configure the models for operation.  The models in
the proposed controller have therefore been selected
to be configurable from performance information
typically available during a system life cycle.
Although model accuracy and fault sensitivity are
sacrificed to a certain extent, the paper demonstrates
that the proposed scheme is capable of detecting two
important faults in the air-handling unit tested.

DESCRIPTION OF THE CONTROLLER
Figure 1 shows the control and fault detection
scheme.  A conventional PI(D) feedback loop
generates control action (uPI) based on the error
between the setpoint and the controlled variable.
This feedback control action is then supplemented by
a control signal (uFF) generated by a simulation
model, which is an inverse representation of the
system.  The model is in static form and produces a
control action appropriate for the current setpoint and
measured disturbances.  The control scheme is
similar to that proposed by Hepworth and Dexter
(1994), which used an adaptive neural network as the
inverse system model.
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Figure 1: The control and fault detection scheme

The inverse model acting in isolation of the feedback
loop would produce responses equivalent to the open
loop dynamics of the system.  The feedback loop
serves to speed the response time of the controller
and eliminate offsets resulting from model
inaccuracies and unmeasured disturbances.  If the
application allows the assumption to be made that the
effect of unmeasured disturbances is small, the
(steady-state) feedback control action (uPI) serves as
an indication of the model/system mismatch.  By
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configuring the model to represent a correctly
operating system, the level of uPI acts as an indication
of fault development.  Faults occurring in the system,
which change its behavior or performance, thus
create a mismatch between the model and system
leading to an increase in feedback control action.
The control scheme incorporates a procedure for
monitoring the feedback action so that an alarm is
generated if uPI exceeds a threshold for a sustained
period.

APPLICATION SYSTEM
The control scheme is evaluated using a simulation
of an air-handling unit developed in the MATLAB
environment using component models adapted from
HVACSIM+ (Clark, 1985).  The unit is modeled on a
real system, which is installed in a large federal
building in downtown San Francisco, USA.  Figure 2
depicts the air-handling unit, which is a dual-duct
type having three thermal subsystems: mixing box,
cooling coil, and heating coil.  The air-handling unit
has the capacity to deliver 74kg/s of air and provide
850kW of heating and 1260kW of cooling.

Each thermal subsystem has its own controller.  The
mixing box controller modulates three sets of
dampers in sequence to maintain a mixed air setpoint.
There is a minimum outside-air requirement based on
damper position (20% minimum outside-air by
position) and a temperature economizer.  The hot
duct houses a steam-to-air heating coil regulated by a
two-port valve, and there is a water-to-air cooling
coil having a three-port valve in the cold duct.  In the
real system, the fan speed is varied according to load
changes in the zones in a conventional VAV
arrangement whereby a constant duct static pressure
is maintained.  In the simulated system, artificial step
changes in airflow rate were applied in order to
maintain excitation but avoid the need for modeling
the zones and VAV boxes.

SIMULATION MODELS USED IN THE
FEEDFORWARD CONTROLLER
The models used in the feedforward controller are
simplified versions of the models in the simulation.
Three separate models are employed; one in each of
the three separate control-loops in the air-handler:
mixing box, heating coil, and cooling coil.  Details of
the model equations can be found in (Salsbury,
1998).  The models used in the feedforward
controller differ from the models used in the
simulation in several respects.  In particular, the
controller models do not treat:

x variations in coil thermal conductance with
fluid flow rates;

x dehumidification in the cooling process;
x non-linearity for variations in control signal

when all other operating conditions are
fixed.

The latter simplification is made because
characterization of this non-linearity requires
parameters that are not easily obtainable or reliable,
such as those related to valve and damper inherent
characteristics and authorities.  Although linear
behavior is rarely achieved in practice, the
simplification is reasonable, as this is one of the
goals of the design and commissioning processes.
Although the model simplifications reduce potential
accuracy and performance of the scheme, a major
advantage is that the model parameter values may be
obtained from typical available information, rather
than requiring training data and additional tuning
effort.

Table 1: Configuration parameters

PARAM ETER/DESIGN SPECIFICATIONS UNITS

HEATING/COOLING COIL

Heat transfer rate kW
Cold fluid inlet air temperature ºC
Cold fluid mass flow rate kgs-1

Hot fluid inlet temperature ºC
Hot fluid mass flow rate kgs-1

MIXING BOX

Minimum fractional outside air flow %

Table 1 lists the parameters required by the controller
and Table 2 lists the required sensor
measurements/variables.  Note that in the dual-duct
air handling unit, air temperatures and flow rates are
required before the coils in both the hot and cold
ducts.

Table 2: Required sensor signals/variables

SENSOR SIGNAL UNITS

Return air temperature ºC
Outside air temperature ºC
Air flow rates kgs-1

Pre-coil air temperatures ºC
Setpoints kgs-1

TEST RESULTS
The control scheme is evaluated in two respects:

x setpoint tracking performance;
x ability to detect faults in the three thermal

subsystems.
Twelve hours of test data, sampled at 5-second
intervals are used to evaluate the control scheme.
The test data contain real measurements of ambient
and return air temperatures from the real building.
Airflow rate is artificially varied in a sequence of
arbitrary steps and ramps.  The setpoints for each of
the three subsystems are also varied artificially in
order to facilitate a rigorous assessment of the
controllers.
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Control Performance
This section compares the performance of the
feedforward controller with the performance of a PI
controller acting in isolation.  Each of the PI control
loops was tuned using the Zeigler-Nichols open loop
test procedure making use of the highest gains
exhibited in the range of conditions in the test data.

Figure 3 shows the performance of the PI controller
when subjected to the test data.  The upper graph
shows the three controlled variables and setpoints.
The middle graph shows the ambient and return air
temperatures and the air flow rate (right axis scale),
and the lower graph shows the control signals to each
of the subsystems.  For these conditions, the PI
controller provides satisfactory performance for the
test data.  Control performance is characterized by
the sum of the mean absolute errors (MAE), listed in
Table 3.

Figure 4 shows the performance of the same PI
controllers, but this time with the inclusion of
supplemental feedforward action.  The graphs show
minor improvements in the responses to the
disturbances.  This is particularly evident for the
heating coil control-loop, which shows tighter control
toward the end of the test data.

Table 3 lists the mean absolute errors in each control
loop over the period of the data.  There is little
change in the performance of the mixing control-
loop, which shows only a 4% improvement.  This is
due to the ambient air temperature not varying
significantly during the test data leading to a
reasonably invariant gain in this subsystem.  In
practice, variations in ambient air temperature
directly affect the mixing box gain and lead to
instability in this loop.  Previous work has shown that
the feedforward controller can significantly improve
the mixing box control-loop in the face of highly
variable environmental conditions (Salsbury, 1998).
The cooling coil control performance improves by
18%, while the heating coil shows the greatest
improvement of 52%.

Table 3: Comparative performance of controllers

MAE (K)
PROCESS COOL M IX HEAT

PI control in isolation 0.22 0.45 0.25
PI + feedforward control 0.18 0.43 0.12
Improvement (%) 18 4 52

FAULT DETECTION PERFORMANCE
The ability of the control scheme to detect faults is
evaluated using the same test data used in the control
performance evaluation.

No Fault Condition
The control scheme is tested firstly using the system
in its correctly operating condition.  Figure 5 shows
the indices associated with the fault detection.  The
top graph shows the control signals generated by the
three feedback loops in the air-handler.  If the models
used in the controller were perfect representations of
the system under control, these control signals would
asymptotically approach zero following each
disturbance.

Figure 5 shows that there are modeling errors in each
of the models.  The errors vary during the data due to
transient effects and because the models approximate
the system better in certain parts of the operating
range than in others.  The cooling coil exhibits the
greatest level of inaccuracy during the test data; this
most likely being due to the extra simplifications in
this model, such as non-treatment of
dehumidification.  The heating coil model appears to
represent the system well, with the feedback
contribution being the lowest of the three
subsystems.  Correlating Figure 5 with Figure 4,
shows that the greatest errors in the mixing box
model are in the mid-range of operation, this being
due to the simplification of linearity between the two
extreme load points.

The bottom three graphs in Figure 5 show the fault
detection output for each loop.  A fault is deemed to
have occurred if the feedback control signal rises
above the threshold and stays above the threshold for
a sustained period (30 minutes).

The selection of a threshold is fundamental to the
performance of the fault detection scheme. The
threshold was selected here based only on the
maximum feedback control actions exhibited for the
correctly operating data.  In practice, the most
reliable way in which to establish thresholds would
be to perform closed loop tests on the subsystems
during the commissioning process.  These tests could
be set up so that selected setpoints exercise the
systems at strategic points in their operating ranges.
Alternatively, thresholds could be identified during
an on-line learning phase, whereby maximum
feedback action is monitored over an assigned
period.  Another possibility would be to determine
default threshold values for particular classes of
HVAC systems based on statistically significant tests
on similar equipment.

Valve Leakage
Leakage through the control valve of a heat
exchanger is a common fault in HVAC systems,
which often persists unnoticed due to feedback
masking and compensatory actions of other systems.
This fault can lead to wastage of energy, not only in
the subsystem where the fault occurs, but also in the
other systems forced to provide compensatory action.
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In this test, the cooling coil valve model in the
simulation is amended so that it leaks by 20% of
maximum flow when the valve is supposed to be
closed.

Figure 6 shows the behavior of the control scheme
for the leakage fault.  The 20% leakage causes the
cooling coil to provide too much cooling during most
of the test data, which makes the feedback control
saturate the control signal at zero.  The setpoint is
only attained when a high cooling demand is needed
during the middle of the data.

Figure 7 shows the fault detection indicators for the
leakage fault case.  The top graph shows that the
feedback loop control action exceeds the threshold
for a large portion of the day.  Correspondingly, the
mixing process graph (second from bottom in the
figure) indicates a fault for much of the data.  The
feedback error is largest when the cooling coil
control signal is zero due to this being the part of the
operating range where the fault is most evident.
When the coil operates at a higher load, the feedback
compensation drops below the threshold.  The
scheme therefore only detects faults when the
considered subsystem is operating at a point where
the effects of the fault are evident.

Stuck Return Air Damper
A stuck damper in the mixing box is another
common fault in HVAC systems.  This fault can be
due to various causes, such as a failed actuator,
damper obstruction, de-coupled linkage, etc.  The
fault is difficult to detect in practice as it does not
cause failure of the mixing process but instead alters
its characteristics and restricts the operating range.
Figure 8 shows the performance of the controller
when the re-circulation damper is stuck at 50% open.
The fault is masked for the majority of the test data
with the fault condition only affecting control
performance in the middle of the day when the
controller demands 100% outside air.

Figure 9 shows the fault indicator variables for the
stuck damper condition.  The feedback control action
to the mixing box increases during the periods when
the dampers are supposed to be providing 100%
outside air.  Unwanted re-circulation through the
mixing box reduces its operating range so that
setpoints close to the ambient air temperature become
unattainable.  The fault is less apparent in the parts of
the range where setpoints are closer to the return air
temperatures.  The fault proves difficult to detect and
the threshold is only exceeded for a short time around
nine hours into the test data.  However, the period
over which the feedback action remains above the
threshold is sufficient to trigger an alarm for the
mixing box.  Note that 30 minutes is set as the time
limit for a threshold transgression in order to trigger
an alarm.

CONCLUSIONS
This paper has demonstrated the potential for using
simplified simulation models as part of an HVAC
control scheme. The tests results presented in the
paper showed that the scheme was able to improve
control performance and detect two different types of
faults in the considered air-handling unit.

The performance of the control scheme and its ability
to detect faults in the controlled process depends on
the accuracy of the models.  Realizable accuracy is
limited by errors in the structural formulation of the
model, selection of correct parameter values, and by
the reliability of the sensor signals used by the
models. More research is needed to ascertain the
optimum model complexity for particular fault
detection applications.

Thresholds need to be related to model accuracy,
which, under ideal conditions, should be established
through rigorous testing on the application system.
There is a trade-off between the time invested in
establishing thresholds, and the reliability of the
scheme.  In the paper, a threshold was established
heuristically based on one set of correct operation
data.  In practice, data of this sort may be to costly to
obtain.  Other means of ascertaining thresholds, such
as on-line learning, or the use of default values may
be more practical alternatives.
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Figure 2: Schematic of the dual-duct air-handling unit.
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Figure 3: Performance of the feedback PI controller acting in isolation
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Figure 4: Performance of the PI controller supplemented with feedforward control action

Figure 5: Diagnostic indicator variables – no fault condition
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Figure 6: Control behavior when the cooling coil control valve is leaking by 20%

Figure 7: Fault indicator variables – leaking cooling valve fault
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Figure 8: Control behavior when the return air damper is stuck at 50%

Figure 9: Fault indicator variables - return air damper stuck at 50%


